Role of phospholipase A2 activation and calcium in CYP2E1-dependent toxicity in HepG2 cells.
نویسندگان
چکیده
Previous studies suggested a role for calcium in CYP2E1-dependent toxicity. The possible role of phospholipase A2 (PLA2) activation in this toxicity was investigated. HepG2 cells that overexpress CYP2E1 (E47 cells) exposed to arachidonic acid (AA) +Fe-NTA showed higher toxicity than control HepG2 cells not expressing CYP2E1 (C34 cells). This toxicity was inhibited by the PLA2 inhibitors aristolochic acid, quinacrine, and PTK. PLA2 activity assessed by release of preloaded [3H]AA after treatment with AA+Fe was higher in the CYP2E1 expressing HepG2 cells. This [3H]AA release was inhibited by PLA2 inhibitors, alpha-tocopherol, and by depleting Ca2+ from the cells (intracellular + extracellular sources), but not by removal of extracellular calcium alone. Toxicity was preceded by an increase in intracellular calcium caused by influx from the extracellular space, and this was prevented by PLA2 inhibitors. PLA2 inhibitors also blocked mitochondrial damage in the CYP2E1-expressing HepG2 cells exposed to AA+Fe. Ca2+ depletion and removal of extracellular calcium inhibited toxicity at early time periods, although a delayed toxicity was evident at later times in Ca2+-free medium. This later toxicity was also inhibited by PLA2 inhibitors. Analogous to PLA2 activity, Ca2+ depletion but not removal of extracellular calcium alone prevented the activation of calpain activity by AA+Fe. These results suggest that release of stored calcium by AA+Fe, induced by lipid peroxidation, can initially activate calpain and PLA2 activity, that PLA2 activation is critical for a subsequent increased influx of extracellular Ca2+, and that the combination of increased PLA2 and calpain activity, increased calcium and oxidative stress cause mitochondrial damage, that ultimately produces the rapid toxicity of AA+Fe in CYP2E1-expressing HepG2 cells.
منابع مشابه
Role of phosphatidylinositol 3-kinase/AKT as a survival pathway against CYP2E1-dependent toxicity.
The objective of this work was to evaluate the possible role of PI3-kinase/AKT as a survival pathway against CYP2E1-dependent toxicity. E47 cells (HepG2 cells transfected with human CYP2E1 cDNA) exposed to 25 microM iron-nitrilotriacetate+5 microM arachidonic acid (AA+Fe) developed higher toxicity than C34 cells (HepG2 cells transfected with empty plasmid). Toxicity was associated with increase...
متن کاملRole of calcium and calcium-activated proteases in CYP2E1-dependent toxicity in HEPG2 cells.
The objective of this work was to investigate whether CYP2E1- and oxidative stress-dependent toxicity in HepG2 cells is mediated by an increase of cytosolic Ca2+ and activation of Ca2+-modulated processes. HepG2 cells expressing CYP2E1 (E47 cells) or control cells not expressing CYP2E1 (C34 cells) were preloaded with arachidonic acid (AA, up to 10 microm) and, after washing, incubated with iron...
متن کاملActivation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression
Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...
متن کاملProtein kinase C signaling as a survival pathway against CYP2E1-derived oxidative stress and toxicity in HepG2 cells.
Hepatic induction of CYP2E1 is a major pathway involved in oxidative stress and damage caused by chronic ethanol consumption; CYP2E1 also promotes the activation of a variety of hepatotoxins to reactive intermediates. Phorbol esters activate protein kinase C (PKC), thereby blocking cell differentiation and promoting tumor growth. In this study, we examined the possible role of PKC signaling as ...
متن کاملSodium salicylate increases CYP2E1 levels and enhances arachidonic acid toxicity in HepG2 cells and cultured rat hepatocytes.
Sodium salicylate and acetylsalicylic acid are drugs used as anti-inflammatory agents. Salicylate prevents nuclear factor-kappa B activation and can cause apoptosis. However, salicylate, a substrate of CYP2E1, is also an antioxidant and can scavenge reactive oxygen species. Experiments were carried out to evaluate whether salicylate can modulate CYP2E1-dependent toxicity. Addition of a polyunsa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 36 شماره
صفحات -
تاریخ انتشار 2003